Macam-macam tipe distorsi dapat mempengaruhi bentuk sinyal output dari sebuah penguat, yaitu:
1. Distorsi Amplitudo
Sinyal output terpotong pada bagian salah satu puncaknya atau kedua puncaknya, seperti yang ditunjukkan pada gambar 6.39. Distorsi ini dapat terjadi pada saat:
- Penguat diberi input yang terlalu besar,
- Kondisi bias berubah,
- Karakteristik transistor yang tidak linier.

Gambar 6.39: Distorsi Amplitudo
2. Distorsi Frekuensi
Distorsi ini terjadi ketika penguatan amplifier berubah secara serentak (drastis pada frekuensi-frekuensi tertentu). Anggaplah sebuah amplifier mempunyai respon frekuensi yang normal seperti pada gambar 6.40a, tetapi pada kenyataannya respon frekuensi berbentuk seperti yang ditunjukkan pada gambar 6.40b, oleh karena itu dikatakan bahwa amplifier mempunyai distorsi frekuensi. Distorsi ini dapat berbentuk penurunan penguatan pada frekuensi rendah atau tinggi dapat juga berbentuk kenaikkan penguatan pada frekuensi rendah atau tinggi.

Gambar 6.40: Distorsi Frekuensi
3. Distorsi Crossover
Tipe distorsi ini terdapat pada output penguat push-pull kelas B (gambar 6.33). Ini terjadi karena transistor pertama sudah off tetapi transistor yang kedua belum on karena menunggu sinyal input pada basis transistor harus kebih besar dari 0,6 V (untuk silikon). Bentuk gelombangnya dapat dilihat pada gambar 6.41.

Gambar 6.41: Distorsi Crossover
4. Distorsi Phasa
Kenaikan frekuensi sinyal akan menimbulkan perubahan phasa sinyal output terhadap input secara relatif. Tipe distorsi ini menyusahkan ketika sinyal input berbentuk gelombang kompleks, karena tersusun dari beberapa komponen gelombang sinus yang mempunyai frekuensi yang berbeda. Hasilnya adalah bentuk output takkan serupa dengan bentuk input.
6. Distorsi Intermodulasi
Ketika ketidak linieran berada pada sebuah rangkaian amplifier, dua sinyal dengan frekuensi yang berbeda, katakanlah 400 Hz dan 1 kHz akan diperkuat dengan baik apabila dicampur, dan output akan berisi sinyal-sinyal dengan amplitudo yang kecil dan frekuensi yang berbeda, yaitu 600 Hz dan 1,6 kHz dan harmonik-harmonik dari frekuensi-frekuensi tersebut. Nilai distorsi harmonik total yang merupakan hasil dari distorsi amplitudo dan distorsi nonlinier, tetapi tidak termasuk distorsi frekuensi, distorsi phasa atau distorsi intermodulasi. Rangkaian yang baik untuk mengukur distorsi harmonik total adalah filter twin tee seperti yang ditunjukkan pada gambar 6.42 yang mempunyai peredaman maksimum pada satu frekuensi. Output dapat diukur dengan menggunakan millivolt meter r.m.s yang sensitif. Sinyal generator diset 1 kHz yang digunakan sebagai sinyal input yang baik untuk sinyal level rendah dan sinyal tersebut juga dimasukkan ke input X osiloskop. Osiloskop akan menunjukkan garis dengan kemiringan 45o

Gambar 6.42: Filter Twin Tee
Distorsi intermodulasi dapat diukur dengan memberikan dua buah sinyal 400 Hz dan 1 kHz ke dalam amplifier yang biasanya dengan sebuah ratio kira-kira 4:1. Kemudian dengan menggunakan sebuah filter pada 1 kHz hasil dari beberapa intermodulasi akan dinyatakan penggunaan metoda yang diuraikan terdahulu.
Sebuah metoda yang dapat digunakan untuk mempera gakan distorsi amplitudo, distorsi pergeseran phasa untuk sebuah audio amplifier ditunjukkan pada gambar 6.43.

Gambar 6.43: Metoda dari Peragaan Distorsi Menggunakan Sebuah CRO
Apabila output amplifier tidak mengalami distorsi. Biasanya osiloskop yang berkualitas tinggi yang harus digunakan untuk pengetesan ini, hingga beberapa ketidaklinieran penguat dalam osiloskop akan diperagakan. Macam-macam output untuk tipe - tipe distorsi yang berbeda ditunjukkan pada gambar 6.43.
Selain cara pengukuran di atas, ada suatu cara pengukuran yang lebih mudah dan hasil yang lebih jelas yaitu dengan memberukan input berupa gelombang kotak dengan frekuensi antara 400 Hz – 1 KHz. Hasil output pada osiloskop akan terlihat mempunyai distorsi atau tidak, seperti terlihat pada gambar 6.44.

Sinyal Masukan Kotak
Kemungkinan keluarannya:

Penguatan lemah pada frekuensi rendah dan tak ada beda phasa

Penguatan lemah pada frekuensi rendah dengan beda phasa

Penguatan lebih pada frekuensi rendah dan tak ada beda phasa

Penguatan lebih pada frekuensi rendah dan ada beda phasa

Penguatan jelek pada frekuensi tinggi dan ada beda phasa

Penguatan lebih pada frekuensi tinggi
Gambar 6.44: Pengukuran dengan Menggunakan Gelombang Kotak pada Sebuah Penguat
7. Derau Pada Sistem Audio
Selain distorsi sebuah sistem audio sangat mudah kemasukan derau (noise) dari luar, karena pada sistem audio yang lengkap ada rangkaian-rangkaian yang sangat sensitif (menguatkan sinyal yang sangat kecil) yang sangat mudah kemasukan noise jika pengawatannya salah. Di bawah ini diberikan beberapa kemungkinan terjadinya derau karena lingkungan dan cara penangannya secara sederhana. Derau yang disebabkan dari luar, biasanya dikenal dengan istilah interferensi, yang selalu dapat dikurangi atau dibatasi bila sumber derau telah dapat diidenti - fikasi. Teknik yang sering digunakan untuk mengurangi derau jenis ini ialah dengan menggunakan filter, pelindung dan pemilihan frekuensi.
Gambar 6.45a menunjukkan bagaimana jalur mikrofon yang pendek tanpa pelindung dapat menimbulkan derau 60 Hz, karena adanya kopling kapasitansi liar, yang hanya 10 pF pada instalasi rumah 120 volt.
Derau frekuensi tinggi (dari transien saklar, sikat arang motor, dimmer lampu) juga muncul pada saluran ac, dan ini akan dikopel lebih kuat lagi, karena adanya reaktansi kapasitif rendah.

Gambar 6.45a: Kapasitansi liar yang kecil pada saluran ac dapat menimbulkan derau yang besar pada level saluran berimpedansi tinggi
Gambar 6.45b menunjukkan pelindung saluran (menggunakan kabel coaxcial), sehingga mikrofon mengkopel derau ke tanah dari pada kemasukan penguat. Gambar 6.46a menunjukkan beberapa kesalahan umum pada pelindung, yakni menghubungkan pelindung dengan tanah. Gambar 6.46b menunjukkan penggunaan pelindung yang benar.

Gambar 6.45b: Pelindung Mengeliminasi Derau

Gambar 6.46b: Pelindung Sambungan yang Benar
Jadi sebuah sistem audio yang bagus selalu memperhatikan sistem sambungan-sambungan yang ada antara satu bagian kebagian yang lain, karena begitu salah satu sambungan kemasukan derau/noise dari luar maka derau ini akan ikut dikuatkan bersama sinyal yang ada sampai kepenguat yang terakhir.
Derau yang lain dapat juga disebabkan oleh sebuah motor. Gambar 6.47a menunjukkan filter derau-brush sebuah motor, yang akan menjaga pemusnahan frekuensi tinggi dari saluran ac yang masuk yang akan terradiasi selamanya. Kapasitor sederhana dipilih, karena akan mempunyai reaktansi tinggi pada frekuensi audio, tetapi mempunyai reaktansi rendah untuk interferensi frekuensi radio, yang akan dapat mengeliminasi interferensi dalam tape atau phone (sepert ditunjukkan pada gambar 6.47b).

Gambar 6.47a: Teknik Meredam Derau untuk Loncatan Bunga Api Motor

Gambar 6.47b: Alat Phone atau Tape-magnet (Head)
Selain derau yang disebabkan dari luar, dapat juga derau disebabkan dari dalam rangkaiannya sendiri. Di bawah ini diberikan beberapa penyebab derau dari dalam, yaitu:
7.1 Derau termal
Derau termal adalah tegangan yang dihasilkan melalui terminal beberapa resistansi yang disebabkan oleh vibrasi thermal acak dari atom yang menyusunnya. Spektrum frekuensi derau termal membentang dari dc hingga batas frekuensi teknik penguatan elektronik. Puncak gelombang derau biasanya mencapai empat kali lipat nilai rms. Semua komponen resistor bias, antenna penerima, strain gages, semikonduktor menghasilkan derau thermal. Hal ini dapat dikurangi dengan mengurangi lebar pita penguat atau dengan menurunkan temperatur komponen terhadap sinyal.
7.2 Derau shot
Derau ini terdapat pada beberapa sambungan atau interferensi yang disebabkan oleh pembawa muatan. Derau Shot dapat dikurangi dengan mengoperasikan penguat yang sensitif pada arus bias rendah.
7.3 Derau Flicker
Derau ini disebabkan oleh fluktuasi arus bias, terutama pada frekuensi rendah. Untuk mengurangi efek tersebut penggunaan frekuensi 100 Hz atau lebih rendah hendaknya dihindari untuk peralatan yang sensitif. Untuk penggunaan frekuensi satu KHz atau lebih, efek derau mungkin masih dapat diabaikan. Selain derau di atas masih banyak lagi penyebab derau pada suatu sistem audio dan itu bisa dibahas pada tingkat yang lebih tinggi lagi.